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We consider the propagation of a weak nonlinear wave whose energy is con- 
centrated in a narrow band of wavenumbers in a fluid which is both dispersive 
and dissipative. We use the small amplitude equations of Whitham’s theory of 
slowly varying wave trains, modified slightly to include dissipation, to show 
that the modulation of the wave may be described by a nonlinear Schrodinger 
equation. For long waves which are purely dispersive we obtain the Korteweg- 
de Vries equation, and for long waves which are dissipative we obtain Burgers’ 
equation by suitable transformations of the nonlinear Schrodinger equation. 
We mention the problem of Stokes waves in deep water and comment briefly 
upon invariant far-field theory. 

1. Introduction 
Taniuti & Washimi (1968) considered the modulational instability of a small, 

but finite amplitude, dispersive hydromagnetic wave propagating in a cold 
quasi-neutral plasma. They found that in a frame of reference moving down- 
stream with the group velocity the slow variation in the complex amplitude A 
of the wave could be described by a nonlinear Schrodinger equation of the form 

.aA a2A 
z-+p- = iqA+rlAI2A, 

at ax2 

where ( A (  denotes the modulus of A.  In  (I) the space co-ordinate x is in the 
direction of propagation, t represents the time, and p, g and r are (in general) 
determinable constants. In  their problem there was no dissipation and in con- 
sequence q = 0 andp and r are real. To obtain (I), which is their far-field equation, 
they used the method of multiple scales. Another paper which considered a similar 
kind of problem is that by Watanabe (1969). 

Stewartson & Stuart (1971) have also used the method of multiple scales to 
study the growth of a small disturbance in plane Poiseuille flow when the 
Reynolds number is somewhat larger than its critical value. Their wave is not 
only diiipersive but also dissipative, and they found that the modulation of the 
wave could also be described by (1) but with p and r as complex constants and 
q real but non-zero. Also, DiErima, Eckhaus & Segel(l971) were able to show 
by using a discrete modal analysis that (1) describes the growth of a small 
disturbance in the vicinity of a marginally stable state f p  a fairly wide class of 
fluid-dynamical problems. 

The method of multiple scales can often be long and intricate and our main 
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aim in this paper is to present a simple derivation, valid for a rather general 
weak nonlinear wave, of the Schrodinger equation which describes the modulation 
of the wave amplitude in the far field. In  $ 2  we shall show that, except for special 
cases, the nonlinear Schrodinger equation may be derived directly from the 
averaging technique developed by Whitham (1965, 1967) and Lighthill (1965), 
modified to allow for dissipation. We shall also indicate how generalizations can 
be written down with the minimum of trouble. The method which we shall use 
bears some resemblance to that of Benney & Newel1 (1967); also, as we do not 
use the Navier-Stokes equations it is of considerabIe interest that we obtain the 
same equation as that found by Stewartson & Stuart (1971), who did start with 
the Navier-Stokes equations. Indeed, although our principal concern in this 
paper is with waves in fluids, much of what we have to say is also relevant to 
waves in solids and lattices (e.g. see Tappert & Varma 1970). 

In  Q 3 we propound the importance of the general case and the key role of the 
nonlinear Schrodinger equation in this subject, and we give reasons as to why 
we feel that in the past special cases have received undue attention. For instance, 
we demonstrate that both the Korteweg-de Vries equation and Burgers’ equation 
may be derived from the corresponding Schrodinger equations for waves which 
are ‘not quite so long’. Another interesting fact which we consider in this section 
is that the steady-state solutions of the Korteweg-de Vries equation and of the 
Burgers equation comprise exuct Zy the steady-state solutions of the Schrodinger 
equation. 

In  $ 4  we show, as a simple example, that the equations which were used by 
Chu & Mei (1971) to describe the motion of Stokes waves in deep water may be 
rewritten as the appropriate Schrodinger equation. We also discuss a few problems 
from the point of view of invariant far-field theory and the method of multiple 
scales. It is worth noting that, whereas in general the propagation of a wave’s 
modulation is governed by a Schrodinger equation, for long waves and for 
perturbations about equilibrium states (when the wave amplitude is nearly 
constant), a further reduction may often be made to either the Korteweg-de Vries 
equation or to the Burgers equation. 

2. Derivation of the Schrodinger equation 
Stewartson & Stuart (1971) considered the nonlinear growth of an initially 

infinitesimally small disturbance in plane Poiseuille flow for a Reynolds number 
slightly larger than the critical value. In  such a problem the energy of the dis- 
turbance is concentrated in a narrow band of wavenumbers. This is the kind 
of problem in which we are interested, and we mention this now because it may 
help the reader to understand the ideas behind our analysis. We suppose that 
the disturbance is superimposed on a basic steady flow which may be charac- 
terized by non-dimensional parameters such as the Reynolds number and the 
Prandtl number and that the physical properties of the fluid remain constant. 
Thus we suppose that there exist a reference length L, a reference velocity U 
and a reference time LIU with respect to which all quantities are made non- 
dimensional. 
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Let the disturbance propagate in an unbounded positive x direction so that 
it may be described by a total wave function $ = B exp {i(kx - wt)},  where B,  
k and w are slowly varying functions of x and the time t .  We restrict the wave- 
number k to real values ; here B is a pseudo-amplitude only, the true amplitude 
being A = Bexp{o,t), where w = w,+iwi and the suffixes T and i denote real 
and imaginary parts respectively. When the wave is purely dispersive wi = 0 
and there is no distinction between A and B. The full equations and boundary 
conditions of the specific problem under consideration will require w and k to 
be related, when the wave is infinitesimally small and unmodulated, by a func- 

( 2 )  
tional condition: 

For non-dissipative problems (2) isusually called thelinear dispersion relationship. 
It follows from (2) that if for the linearized problem a solution I? of the form 

exp { i (kx  - wt) }  requires D(k, w )  = 0,  that is D( - ia/ax, ia /a t )  I? = 0,  then if we 
seek a solution of the form r = B(x, t )  exp { i ( h  - wt)}  the associated variational 
equation of Whitham’s theory may be written as 

D(k,o)  = 0. 

D(k,  @) B - & ( D k k B x x -  2 D k w B x t f  DwwBtt}+&i{DkkkBxxz 

+ similar higher order terms}? + nonlinear term = 0, (3) 

where suffixes denote partial derivatives. A term - i{Dk Bx - D, Bt} has been 
omitted from (3) because it balances the dominant terms due to variations of 
k and w with respect to x and t .  This balance is expressed by the energy-transport 
equation, which we shall use separately later. 

For a real physical problem the boundary conditions will usually require 
D(k, w )  to be a complicated function, and except for special cases we shall neglect 
the higher order terms in (3) and truncate at quadratic order in derivatives of 
both Ic and w. This process implies the invocation of a far-field approximation, 
or, to put it another way, that the energy of the wave group is concentrated in 
the neighbourhood of a point (k,,w,) in the phase space. In  general w will be 
an analytic function of k, or vice versa, ‘almost everywhere’ in the phase space. 
Special cases when this is not so will need separate treatment (for an example 
see Midzuno & Watanabe 1970) but we shall suppose that (2) may be written as 
w = Q(k)  near some point (k,, wo) in the phase space. When Ic = k, we shall write 
Q(k,) = Q0 = SZ,,+iQ,,, where the suffix 0 denotes the original state, as de- 
termined by some suitable initial condition. Unless otherwise stated we shall 
choose k, so as to make Qoi a maximum because if the growth of a small dis- 
turbance is controlled initially by linearized theory then the energy will collect 
into a neighbourhood of that wavenumber which makes the imaginary part of 
Q a maximum. 

So we put D ( k , w )  3 w -  Q ( k )  in (3) and neglect the higher order terms to 
obtain 

(4) (w - IR(k)} B - &{ - Q“(k)  B,,}+ nonlinear term = 0,  

where a prime denotes differentiation with respect to k .  In  Whitham’s theory 
the lionlinear term is replaced by the average value of the slowly varying part 

t We note that for Klein-Gordon problems the higher order terms are identically zero. 
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over one cycle multiplied by the rapidly varying part. So in (4) we may suppose 
that the nonlinear term contributes to w a function of A2. Thus for a small but 
finite wave we may expand this function for small values of A2, neglecting terms 
of order A4, and rewrite (4) as 

w = Q ( k ) - -  I (-) a2a %+aA2, 
2 ak2 , 

where we define 01 E (aw/aA2),. (6) 

The second term on the right-hand side of (5) was also obtained by Chu & Mei 
(1970); the coefficient of Bx,/B may be evaluated at k = k, as the error involved 
is of the same order as that of the higher order derivatives of B neglected. 

We are interested in the departure of the quantity kx--wt from its original 
value, so we follow Lighthill (1965) and define 

8 5z k x - w t  = k , x - Q , t + $ ( x , t ) ,  

4 x 9  t )  = Qo - 9t 
and k ( x , t )  = k,+#,. 

so that 

We substitute (8) and (9) in (5) and ignore terms of order 9: in the expansion of 
QZ(k) to obtain . ,  

(10) 
Next we define p and y by 

p = (aQ/ak),, y = (a2Q/akZ),, (11) 

(12) 

so that we may rewrite (10) as 

9t + P 9 x  + &Y (9: - [Bxx/BI) + @A2 = 0. 

Now (12) is a single equation which connects 9 and B (for A = B e m i t )  so we 
need another equation, the energy-transport equation, to complete the system, 
We shall use Whitham's energy-transport equation in its linear form only, 
although for stronger waves we would need to consider the dependence of the 
group velocity on the amplitude? as we shall indicate in 5 4. For waves which are 
purely dispersive and have amplitude C, the linear energy-transport equation is 

ac2 a 
-+-(c,CZ) = 0,  
at ax 

where cg is the infinitesimal group velocity. The amplitude A = Bewit of our 
wave, which in addition is dissipative, has this amplitude multiplied by the 
factor ewit because of dissipation, so that there exists an analogous wave of 
amplitude C = A e-wit = B which is purely dispersive, and therefore 

We note that in terms of A we may write (14) as 
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if we use the property that wi is only a slowly varying function of x and t .  In  
a private communication Professor Whitham has mentioned that one of his 
students (Jimenez) has also derived (15) by using some ideas of Prigogine. For 
small values of k - k,, we have aQ/ak = ,8 + ( k  - k,) y = p + y$z from (9), so from 
(14) we obtain 

This is the second equation which we required and, with (12), suffices to de- 
termine the system. 

We now put x = Bei+ and may thus readily verify that (12) and (16) are 
equivalent to the single equation 

To describe the slowly varying part of the wave we define a wave function 
$ ( X >  t)  by 

8 = $(%, t )  exp {i(k,x - Q,,t)}, (18) 

so that x = II-exP(-Qoit) (19) 

and also A = I+ . ]  ; we recall that $ was defined earlier by $ = B exp ( i (h  - wt)]. 
We now substitute for x from (19) into (17) and find that the required equation 
for $ is 

We see from (20) that the appropriate time scale for the variation of $ is 
r = Qoit .  As $ describes the slowly varying modulation of the wave we require 
Qoi to be small. As mentioned earlier, we may suppose, for example, that an 
initially infinitesimal disturbance is growing slowly, SO that Qoi will indeed be 
small. For in many physical problems a given basic flow will become unstable to 
infinitesimal disturbances when a non-dimensional parameter P exceeds some 
critical value P,. Then, in the k,  P plane, the line P = P, is a tangent to the 
neutral stability curve QOi = 0 and touches this curve at  what we shall call the 
critical point. 

When P only exceeds P, by a small amount the bandwidth k - k, of the energy- 
containing wavenumbers will be small, equal to E say, and both Qoi and P - P, 
will be of order e2 provided that y =!= 0. So we may expand a, /? and y in (20) 
in terms of E and, consistently with those terms which have already been 
neglected, evaluate them at the critical point. At this point p is real and equal 
to the infinitesimal group velocity. In  fact B will be real even for P > P, because, 
when the wave is infinitesimally small, linearized theory will select k, so that 
the imaginary part of Q is a maximum, as mentioned earlier. So we now move 
the x axis downstream at the group velocity p and write (20) as 
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Equation (21) is the principal equation of this paper; it is a dissipative form 
of the nonlinear Schrodinger equation, not only because of the term containing 
Qoi, but also as in general both a and y will be complex constants. The imaginary 
part of y will be negative for k, is such that the imaginary part of Q is a 
maximum. The contribution . / + I 2  to the nonlinear potential V = if20i+al$/2 
is due partly to  the back-reaction of the distorted basic flow on the disturbance. 
In  this context we can recognize an analogy with the problem of wave propaga- 
tion in superfluid helium as studied by Tsuzuki (1971). 

If it  had been appropriate to use ( 2 )  in the form k = Q F ( w )  rather than w = Q ( k )  
we would have obtained an equation similar to (21) but with the roIes of x and t 
interchanged, as in the plasma problem considered by Watanabe (1969). It is 
crucial to move with the group velocity so as to remain near the centre of the 
wave group, for this is where the most important changes will take place, as 
Benney & Newel1 (1967) have observed. Details of the flow near the centre of the 
wave group may then be sought without obtaining a global solution. For instance 
the solution of a linear Klein-Gordon problem in such a neighbourhood may be 

expressed in the form 03 + = c @{€(X - cgt) ,  &}, (22) 
i= l  

where each 
We can see quite clearly where the Schrodinger operator comes from by 

considering an integral representation of the lineur problem.? Let the energy of 
the disturbance be concentrated in a small wavenumber bandwidth near k = k,. 
Then, as the problem is Iinear the total wavefunction A may be represented by 
an integral of the form 

satisfies a Schrodinger equation. 

A = F(k - k,) ei(kx-wt) dE. (23) s 
We put k = k o + ~ ,  so that K is of order e, and expand w(k,+ K )  for K small as 
w, + KW;) + + K ~ w ;  + . . . so that we may write (23)  as 

il = ei(koz-oo,t) F(K)  exp [w,,t] exp [ ~ { K x  - K W ; ~  - + ~ 2 4 t ) ]  d ~ .  (24) s 
We choose E ,  so that the imaginary part of w is a maximum, w i  then being real, 
and move the x axis downstream a t  this group velocity. Now let + represent the 
slowly varying part of A, so that 

Then, by straightforward differentiation, it follows from (25) that 

The values of 0;) and w; used above in the expansion of w may be identified with 
the values of ,I3 and y as defined by (1  1). It is now easy to see that if y = 0 in 
(21) then a higher x derivative term will be present, a situation which we will 

t I am very grateful to Professor N. C. Freeman for this suggestion. 
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discuss in $3.  The above argument may be compared with the discussion in $ 2  
of Hocking, Stewartson & Stuart (1972). 

For a given specific problem the values of a and y in (21), and of 1, must be 
found from the full equations and boundary conditions. If the flow is bounded 
in a x direction normal to the x axis then /3 and y are determined by the eigen- 
values of the equation for the z-dependent eigenfunction of linearized theory 
when the disturbance is infinitesimally small. The value of a, which is often called 
the first Landau constant, is determined by a secularity condition as is well 
explained, for example, by Reynolds & Potter (1967) and by Matkowsky (1970). 

If the flow is also unbounded in a y direction, so that x, y and z form a right- 
handed system, we may consider the wavenumber k to be a vector in the x, y plane 
with a component 1 in the y direction. Then if i and j denote unit vectors in the 
x and y directions respectively we may generalize (9) to k = (k, + $z) i + (1, + 9,) j 
and show, though the algebra is more cumbersome, that an additional term 
&(82L2/8Z2)oa2$/ay2 must be added to the left-hand side of (21). For stability 
problems to which Squire’s (1933) theorem is applicable the coefficient of 82$/8y2 
will be evaluated at 2, = 0, and a careful examination of (2), which will now be of 
the form D(k,  1, w )  = 0, will enable us to express this coefficient in terms of already 
known quantities. In  a purely dispersive problem, for instance, its value is p/2k0, 
where ,u is the group velocity minus the phase velocity. In  this case the GO- 

efficients of both a2$/ax2 and a2$/8y2 will be real and so, by appropriate scaling, 
these two terms may be written as V2$, where V2 is the two-dimensional Laplacian 
operat D r  . 

In  the derivation of (21) we have neglected higher order nonlinear terms on 
the right-hand side such as &(a2u/8(A2)2)o [ $I4 $. If, however, we expand $ in 
powers of the small parameter B so that the leading term in this expansion is 
B $ ~ ,  then the term given above does not contribute to the equation for $rl when 
ex and e2t are of order one. Each term in (21) is strictly of order e3$, or e3G and, 
at worst, we have neglected terms of order Hence (21) is valid provided 
B $ ~  < 1, and the theory breaks down when N e-l. Thus a solution for $1 
found from (21) can be quite large and still consistent with the neglect of higher 
order nonlinear terms. Hocking & Stewartson (1972a, b )  have recently under- 
taken a numerical and analytical study of the equation for $l including the 
y derivative term to determine whether, given initial conditions appropriate to 
the linearized problem, $l remains finite in size or bursts after a time of order c2. 

It is significant that the only simple term of order 8 which may be added to 
(21), without destroying the far-field invariance (see $ a), is the nonlinear term 
$$$, which replaces I$]* $ in long-wave theory as we shall discover in the next 
section. We defer until 94 a discussion as to why (21) had to be a form of 
Schrodinger’s equation, even if only in a disguised form. 

3. The general case and the long-wave approximation 
We mentioned in $ 2 that we consider a problem such as the stability of plane 

Poiseuille flow to be a good example of the ‘general case’. By the general case 
we mean one for which the analysis of 0 2 is valid; in particular, this requires 
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both k, and (a2Q/ak2), to be non-zero. When one or both of these quantities is 
zero a special treatment is required and we have a ‘special case’. For example, 
a stability problem will be a general case only if at the critical point on the neutral 
curve for infinitesimal disturbances k and a2Q/ak2 are both non-zero. It is not 
essential for the group velocity to be non-zero; if it is zero then typical problems 
are those of Bhard  convection and of flow between rotating cylinders. Problems 
for which the group velocity is non-zero are, however, of more interest because 
then a disturbance will evolve over a long distance, so the modulation will be 
important provided that there is no recycling of the flow, as Stewartson & 
Stuart (1971) point out. 

The general case is very important indeed and the role of the nonlinear 
Schrodinger equation in this subject has been obscured in the past because so 
much attention has been given instead to special cases, for which the relevant 
far-field equation is often either the Korteweg-de Vries equation or Burgers’ 
equation. It is not sufficiently appreciated that these two equations are both 
intimately associated with the nonlinear Schrodinger equation as we shall see 
later in this section. 

In  the special case when ( P Q / a k 2 ) ,  or y in (21) is zero it is necessary to modify 
(5) to include a higher derivative of B with respect to x. Let ym be the mth 
derivative of Q with respect to k a t  lc = k,, where m is the smallest integer 2 3 
such that ym =I= 0. Now, instead of (21), the method of 5 2 yields the more general 
equation 

where again the x co-ordinate moves downstream at the group velocity. To 
check that the linear terms in (27) are correct we may use the integral argument 
of $ 2  by extending (24) to include the mth derivative term; the relevant scaled 
variables will now be K X  and K m t ,  with K of order e and QOi of order em. For a 
problem with dissipation m will be an even integer, for if m were odd then the 
neutral curve for infinitesimal disturbances would contain another critical point 
at  a smaller value of the physical parameter P. Thus, when m is an odd integer 
there will be no dissipation; this result has a connexion with the theory of long 
dispersive waves, for which (2) can be written as i w  = f ( i k ) ,  where f is a real 
operator and an odd function of ik. Hence only odd derivatives of w with respect 
to k exist when k --f 0. Although we wish once more to stress the prime importance 
of the general case, we shall now consider briefly the application of our ideas to 
long-wave theory. 

We shall consider two cases of long waves: in the first case we shall suppose 
that there is dispersion only and in the second case that there is both dispersion 
and dissipation. So in the first case we have a wave which is purely dispersive, 
thus in (21) we may put QOi = 0, and a and y will both be real. (Note, however, 
that y will be of the same order as the wavenumber k,.) A problem of this kind 
has already been examined by Asano, Taniuti & Yajima (1969), who obtained 
(21) with Qoi = 0 by the method of multiple scales. They used the transformation 
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in order to write the real and imaginary parts of (21) as 

and 

aP a -+-(pcr) = 0 at ax 

-+crz+ay-=-- ap ax y2 4 ax a p a (  p-Bg)]. a c  at ag 

If ay is negative small disturbances about a constant equilibrium state p,, cr,, 
are unstable, though the wave may be trapped by the nonlinear potential. This 
is because y is of the same order as k,, and when k,, y -+ 0 the system described 
by (29) and (30) is elliptic. However if ay is positive a far-field analysis indicates 
that the departures ofp and cr from their equilibrium values satisfy the Korteweg- 
de Vries equation. An additional point, which is of deeper significance, is that 
the two steady-state solutions of the Korteweg-de Vries equation (the solitary 
wave and the cnoidal wave) are both exact solutions of (29) and (30), as Tsuzuki 
(1971) has demonstrated. 

We can understand this connexion with the Korteweg-de Vries equation from 
a different and interesting point of view. For long dispersive waves the linear 
dispersion relation may be expanded as a Taylor series for small values of k: 
R(k) = ak+bk3+ ..., where a, b, ... are real, usually non-zero, constants. So we 
have a special case for which a2R/ak2 vanishes as k 3 0 but a3!2/ak3 -+ b $: 0. 
Thus, rather than using (21) in the limit as k, y -+ 0, it is preferable and more 
relevant to consider the Schrodinger equation (27) with m = 31- and QO5 = 0, 
so that 

However, (31) is not quite correct because we have the special case when k, = 0, 
for which a will be of order k as k -+ 0 since w is of order k. Now in an Eulerian 
formulation the nonlinear term is of the form (u . V) u or similar to uux, where u 
is a typical velocity component. For long waves the nonlinear term ] $ I 2 $  in 
(21) and (27) comes essentially from expressing llf as a Fourier series in e i k X  and 
extracting the coefficient of eikx from a dominant term $$x after calculating non- 
linear interactions such as ik$$. $ eikx and - eaikX. $ e-ikz, where $ is the 
complex conjugate of $. Therefore, in the long-wave limit k -+ 0, 

w x  ikllC.l"II-, 

that is, the nonlinear term may be expressed in its Eulerian form. So in (31) we 
may replace ikl$la $ by a term proportional to $$-, and obtain 

where a' is proportional to the well-defined limit of alk as k -+ 0. Equation (32) 
is of the required Korteweg-de Vries form and in the hyperbolic case a' will be  
real, so we may seek a real solution for +. 

t For some magneto-acoustia waves b = 0, then m = 5 is appropriate. 
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The above reasoning is rather tortuous but we cannot expect either of the 
Schrodinger equations (21) and (27) to be very useful for long waves because of 
the special way in which Whitham’s theory requires the nonlinearity of the 
problem to be treated. It is, however, reassuring to find that the propagation of 
a small modulation on a wave of almost constant amplitude is governed by the 
Korteweg-de Vries equation when there is no dissipation because this result is 
in complete accord with invariant far-field theory applied to the Navier-Stokes 
equations for a non-dissipative problem. 

In the second case we suppose that there is some dissipation and put y = 7, + iyi 
and a = a, + ia, in (21), with Qog non-zero and yi negative. To reduce the problem 
to  Burgers’ equation we use the transformation 

to write the real and imaginary parts of (21) as 

and (35) 

where r = pb. We now consider small perturbations about the equilibrium state 
c = a. = 0,  p = po = - Qoi/ai, so that a, must be negative if Qoi is positive. The 
appropriate far-field scaling is 

P =po+~p,+.. . , \  

I c7- = 6+CT1+ ..., 
= 63X’ 

7 = 6t, I 
where the small parameter 6 is a measure of the amplitude of the perturbation. 
I f  we substitute (36) in (34) and (35), then from the lowest order terms we obtain 

and 

We now substitute for p1 from (38) in (37) and find that vl satisfies the Burgers 

p1 may then be found from (38). 
In  fact this perturbation solution is an exact solution of (34) and (35). In 

particular, v1 may have the steady-state tanh-profile solution of the Burgers 
equation, in which case p1 will be a constant plus a term proportional to u:. 
This profile is the third exact steady-state solution of the Schrodinger equation. 
As in the first dispersive case both a, and a, will be of order lc as lc +- 0, so the 
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limiting value of &,./ai in (39) is well-defined. I f  both yr and a,. are zero then (39) 
is the simple diffusion equation. In  this case there exist solutions of (34) and (35) 
with = 0, and the form of p* may yield either of the two other steady-state 
solutions of the Schrodinger equation; however, these are both unstable when 
yi is negative. Equation (39) is invalid if ai = 0 for then po does not exist since 
the amplitude does not directly affect the rate of dissipation; this case is more 
akin to the dispersive problem. 

However, again, as in the first case, we can appreciate the above connexion 
with the Burgers equation simply by arguing that for long waves a nonlinear 
term ikl$12$ such as that in (21) may be replaced by a term proportional to $pz. 
For example when y,, = 0 we may write (21) as a slightly modifiedformof Burgers’ 
ecruation: 

(40) 

where a’ is proportional to the limit of alk as k 3 0. If a’ is real then we may seek 
a solution for $ which is real, and, more generally, we can do this when yr =I 0 
provided that a’/y is imaginary. 

What we have shown above is that when there is dissipation the propagation 
of a small modulation on a wave of otherwise constant amplitude is governed 
by the Burgers equation. Again this is just the result which we hoped to obtain 
because the invariant far-field equation which governs the propagation of a small 
disturbance about a constant equilibrium state solution of the Navier-Stokes 
equations in the direction of propagation is the Burgers equation. 

4. Discussion 
In this paper we have used the Whitham theory of slowly varying wave trains, 

modified slightly to include dissipation, to investigate the propagation of a weak 
nonlinear wave in a fluid which is both dispersive and dissipative. If the energy 
of the motion is concentrated in a narrow wavenumber band we find that, in 
a frame of reference which moves downstream with the group velocity, the 
modulation may be described by a wave function @ which satisfies a Schrodinger 

In  (41) W is a complex constant whose imaginary part is negative and the 
potential function V is of the form 8, + 8z1$12, where 8, and 8, are also complex 
constants. The real part of 8, may be taken to be zero, and if the bandwidth is 
measured by a small parameter E then 8, will be of order e2 and $will be of order 8. 
We conjecture that for stronger waves $ will still satisfy (41) with both W and V 
as complex functions of / $ l a  such that if they are expanded as power series in 
1$12 then, for consistency, the expansion for W will contain one term less than 
that for V .  

This equation is of the same form as that found by Stewartson & Stuart (1971) 
for describing the growth of a small disturbance in plane Poiseuille flow when the 
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Reynolds number is just above the critical value. More recently, Asano (1972) 
has also obtained (4l), by use of the method of multiple scales, as the far-field 
equation for a hyperbolic system of partial differential equations with first-order 
time derivatives and second-order space derivatives. 

It is significant that the relevant equation is of Schrodinger type because we 
have applied Whitham’s theory to the propagation of a group of waves of small 
wavenumber differences- a puke. As Schrodinger (1926) pointed out in his paper 
on continuous transition from micro-mechanics to macro-mechanics, this problem 
is just the continuum analogue of that of the wave motion of a particle in quantum 
mechanics. Indeed the diagram used by Schrodinger to explain the relevance 
of his wave equation to the propagation of a pulse is almost identical to the 
diagrams of wave-pulse experiments described by Feir (1967). 

When there is no dissipation both W and V in (41) will be real quantities; 
as an example of such a problem we refer to Chu & Mei (1971), who considered 
the evolution of Stokes waves in deep water. They used the small amplitude 
equations of the Whitham theory to obtain the principal equations (2.5a, b )  of 
their paper which may be written as 

and - 

aa2 a -+- = 0 at ax 

(43) 

In  (42) and (43) we have put their w = - 2q5x; here a is a small amplitude and $ 
is a small phase variation. We wish to recast these equations into their Schrodinger 
form and to find W and the potential function V .  

To do this we integrate (43) with respect to x. The constant of integration will 
be a function of time only and we may set this equal to zero as q5 is undehed to 
within an arbitrary additive function oft .  So we can rewrite (43) as 

q5t + iq5; - *a2- axx/32a = 0. (44) 

If we now put $ = a era4 we may readily verify that (42) and (44) are equivalent to 

so that W = Q and P = -+\$I2. 
A similar result to (45) would have been obtained by Nayfeh & Hassan (1971) 

in their wave problems had they not omitted to move their co-ordinate system 
with the group velocity, so as to be near the centre of the wave group. Their 
consequent omission of a modulation term similar to axx/a in (44) led them to 
the erroneous conclusion that the nonlinearity affects only the phase of the 
motion directly and not the amplitude. 

We conclude with a few comments on invariant far-field theory and the mixed 
Korteweg-de Vries-Burgers problem. First, we observe that in deriving (5) we 
assumed that the coefficient of Bx,/B was non-zero and that we could ignore the 
higher derivatives of B. So the analysis of 8 2 is a far-field theory and therefore 
it is not surprising that the differential equation (21) which governs $ is an 
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invariant far-field equation; by invariant we mean here that (21) is its own far- 
field equation. Moreover, if the coefficient of B,/B in (5) is zero, so that (5) 
must be modified to include a higher derivative, then the governing equation will 
be (27), which is also an invariant far-field equation. 

Second, we notice that for small modulations of equilibrium states and for 
long waves the far-field equations will usually be of the Korteweg-de Vries or 
Burgers family. If a physical problem with both dispersion and dissipation is 
controlled by a mixed Korteweg-de Vries-Burgers equation, which is no€ in- 
variant, then three time scales are involved. For such a problem would a multiple- 
time-scale analysis require the initial condition for the longest time scale to be 
a solution of the Burgers equation? For example, Baum (1971) considered an 
initial-value problem in the kinetic theory of gases and obtained Burgers equation 
as his far-field equation in the direction of propagation because (a) he considered 
a small perturbation about an equilibrium state, ( b )  his problem was dissipative 
and (c) he used an Eulerian (as opposed to Lagrangian) formulation. 

I am very grateful to Professor N. C. Freeman for an idea contained in 0 2 and 
for several discussions. I also wish to thank Professor M. J. Lighthill for his en- 
couragement and Professors K. Stewartson, T. Taniuti and G. B. Whitham for 
their helpful correspondence. 
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